

$Li_{2\text{-}x}Fe_{0.5}(VO)_{0.5}(PO_4)F_{0.5},$ a New Mixed Metal Phosphate Cathode Material

Chris J. Allen,* Sanjeev Mukerjee,** and K. M. Abraham***,Z

Department of Chemistry and Chemical Biology, Northeastern University Center for Renewable Energy Technology (NUCRET), Northeastern University, Boston, Massachusetts 02115, USA

A new Fe-V mixed metal phosphate of the composition, $\text{Li}_{2\text{-x}}\text{Fe}_{0.5}(\text{VO})_{0.5}(\text{PO}_4)\text{F}_{0.5}$, has been synthesized and characterized as a single phase Li insertion/extraction cathode material for rechargeable lithium batteries. Its tetragonal crystal structure revealed from X-ray diffraction and absorption spectral data exhibits little change with Li extraction and subsequent Li insertion. The charge/discharge cycling capacities obtained from Li cells is consistent with the structure. The presence of F in the material is essential to prepare a mixed metal phosphate with equal amounts of Fe and V in the crystal structure and is probably the key to our success in preparing a single phase metal phosphate cathode material.

© 2012 The Electrochemical Society. [DOI: 10.1149/2.030210jes] All rights reserved.

Manuscript submitted April 24, 2012; revised manuscript received June 20, 2012. Published August 29, 2012.

The olivine LiFePO₄, developed into a power dense Li insertion cathode for Li-ion batteries, has found commercial success over the last decade. Several features inherent in the material are responsible for this, including low cost, non-toxicity, and an iron redox center. From an energy density perspective, LiVOPO₄, which exists in various crystallographic phases, is also an attractive polyanionic material offering a two-phase discharge plateau several hundred millivolts higher than LiFePO₄. But unlike LiFePO₄, the vanadyl phosphates have not yet overcome rate limiting processes related to poor electronic conductivities and/or low Li⁺ diffusion which confine them to low rate charge/discharge cycling.

Even more recently, fluorinated derivatives of Fe and V phosphates have also received attention. For example, the LiMPO₄F (M = Fe,V) phases crystallize in a triclinic P-1 space group, isostructural to tavorite and amblygonite. ^{1,2} These phases exhibit Li extraction voltages of 2.8V for (Fe²⁺/³⁺) and 4.1V (V³/⁴⁺) as well as large three dimensional Li pathways for good ionic conductivity. An orthorhombic Li₂FePO₄F phase also forms via ion exchange with its sodium analog, and results in a solid solution single phase cycling profile, unique to metal phosphate materials.³ It is this electrochemical feature which brought to our attention the mixed metal (fluoro)phosphate presented here.

Combining features of the three phosphate moieties, V = O, FeO_x , and $Fe-F_y$ into a single phase material, $Li_2Fe_{0.5}(VO)_{0.5}(PO_4)F_{0.5}$, was the focus of this work. Synthetic attempts involved typical solid state techniques. The Fe-V mixed metal flourophosphate synthesized here responds electrochemically as having a single phase material with Li extraction/insertion processes at V and Fe redox active sites.

Experimental

Synthesis of the Fe/V compound was carried out using a two-step heat-treatment preceded by intimate mixing of the precursors. In an acetone slurry, appropriate amounts of iron (II) oxalate (Alfa Aesar, 99.999%), ammonium metavanadate (Aldrich, 99.999%), lithium fluoride (Aldrich, 99.98%), and ammonium dihydrogenphosphate (Aldrich, 99.999%) were mixed in a zirconium vial for five hours with a Spex ball mill. The resultant mixture was dried, pressed in to a pellet at 3000 psi, and heated for 350°C for 3 hours under argon. The Fe/V phase formed following the second 4 hour heat-treatment at 600°C under a 5% H₂/Argon blend of purge gas.

X-ray diffraction (XRD) measurements were performed on a Rigaku Ultima IV diffractometer (Cu $K\alpha_{1,2}$ radiation). Unit cell constants of the powder pattern were refined with Expgui⁴ and GSAS⁵ using Lebail pattern matching. Prior to XRD measurements, extracted

T-cell electrodes were disassembled in a glove box and washed with ethyl methyl carbonate (EMC) to remove excess salts. Inductively coupled plasma mass spectrometry (ICP-MS) measurements were contracted out to Galbraith Laboratories, Inc. (Knoxville, TN) to determine elemental composition.

Compression fitted Li half-cells (T-cells) with 1 M LiPF₆ 1:1.2 EC/DMC electrolyte were utilized to collect galvanostatic cycling data on an Arbin battery cycler. Pressed cathodes consisted of 77% active material, 20% carbon black, and 3% PVDF binder resulting in active material loadings of approximately 5mg/cm². Active material and carbon black was mixed in a Spex stainless steel vial for 3 hours. The in-situ spectroelectrochemical half-cell which was used for the X-ray absorption near edge structure (XANES) study consisted of a Li anode, Whatman glass microfiber separator, and the cathode mix, painted onto a substrate (Al or grafoil). The cell was housed between two steel plates with polyester protected windows to allow for X-ray transmission along with a silicon gasket to provide a hermetic seal.

X-ray absorption measurements were collected in transmission mode at the V K-edge (5465 eV) and Fe K-edge (7112 eV) at beam line X-18a of the National Synchrotron Light Source at Brookhaven National Laboratory, with a Si 111 crystal detuned 35% to reject higher harmonics. Grafoil was used as the positive electrode substrate to increase transmission signal at the V edge and Al was utilized at the Fe edge to avoid Fe contamination originating from grafoil. Preparation of triclinic $\alpha\text{-Li}_x VOPO_4$ and collection of XAS data for this phase is described elsewhere. Data processing was done in Athena, version 8.056 developed by Ravel and Newville.

Discussion

Initial efforts at synthesizing lithiated Fe-V mixed metal phosphates without F led to mixtures of LiFePO₄, Li₃Fe₂(PO₄)₃, Li₃PO₄, and V₂O₃ when Li acetate or Li₂CO₃ were used as Li sources. The synthesis conditions were not favorable, possibly due to structural differences between the LiFePO₄ and LiVOPO₄ frameworks. Olivine LiFePO₄, which does share the same space group as orthorhombic β -LiVOPO₄ (Pnma) has recently been shown to substitute up to 0.25 moles of Fe with V using a low temperature microwave synthetic route.⁸

We succeeded in synthesizing the Fe-V mixed metal compound, $Li_{2 \text{-}x}Fe_{0.5}(VO)_{0.5}(PO_4)F_{0.5},$ by incorporating fluorine into its crystal structure. We can see that by including LiF along with the V, Fe and P starting materials in atomic ratios proportional to the two lithiated metal phosphates, $Li_2FePO_4F\left(Fe^{2+}\right)$ and $Li_2VOPO_4\left(V^{3+}\right)$, the mixed metal phase is formed as represented in scheme 1.

Scheme 1

 $\text{Li}_2\text{FePO}_4\text{F} \cdot \text{Li}_2\text{VOPO}_4 \rightarrow \text{Li}_4\text{Fe}(\text{VO})(\text{PO}_4)_2\text{F}$ (i.e.) $\text{Li}_2\text{Fe}_{0.5}(\text{VO})_{0.5}(\text{PO}_4)\text{F}_{0.5}$

^{*}Electrochemical Society Student Member.

^{**}Electrochemical Society Active Member. ***Electrochemical Society Fellow.

^zE-mail: kmabraham@comcast.net