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Notes – Errors and Noise 
PHYS 3600, Northeastern University, Don Heiman 

 

1.  Accuracy versus Precision 
 
1.1 Precision – how exact is a measurement, or how “fine” is the scale (# of significant figures).   
 
Suppose you measure a resistor with a digital ohmmeter.  The ohmmeter reads 1.53483 Ω.  This number 
has a high precision.  However, it may not represent the “true” resistance as the wires connecting the 
resistor and ohmmeter have some small resistance that contributes to the measurement. 
 
1.2 Accuracy – how close is the measurement to the “true” value. 
 
Accuracy is a measure of the correctness of the measurement.  To determine a more accurate value for the 
resistor’s resistance, you could measure the resistance of the wires and subtract it. 
 

2.  Errors 
 
We often want to know how close we are to the truth.  The error is simply the quantifiable difference 
between the value obtained in real life and the “true” value.  There are three main categories of errors: 
blunders, systematic errors, and random errors. 
 
2.1 Blunders – These can usually be avoided by examining the results as you proceed with measurements.  
Examples are: reading and recording the wrong scale on the instrument, such as millivolts instead of volts; 
reading milliseconds instead of microseconds on the oscilloscope time base; forgetting to convert 
frequency f in cycles/second (Hz) to ω in radians/second; or mixing up centimeters and inches. 
 
2.2 Systematic Errors – these are “reproducible” errors from faulty calibration or biased observation. 
 
They can often be estimated from analysis of the experimental techniques.  If you are measuring a distance 
with an incorrect (shortened or lengthened) ruler, you can calibrate ruler and make the correction by 
multiplying the original distances by a calibration factor. 
 
2.3 Random Errors – these are due to fluctuations in measurements from repeated experiments. 
 
Random errors are due to statistical fluctuations, often referred to as noise, or limited precision of an 
instrument.  They can be minimized by repeating the experiment many times.  Note that random errors 
which are small produce high precision, but not necessarily high accuracy. 
 
Imagine you are timing the vibration of a mass on a spring with a stopwatch.  You could try to measure the 
period of a single oscillation.  One measurement might produce a value of 0.8 sec.  By repeating the 
experiment you get values of 1.1, 1.0, 0.9, and 1.2 sec.  You can average these five numbers to get a more 
precise value than from a single measurement.  The average of the five measurements is 1.0 sec. 
 
In addition, there could also be systematic errors in which your reaction time with the stopwatch has added 
a few tenths of a second to the timed interval.  The systematic error can be reduced by simply timing many 
oscillations instead of a single oscillation.  In this way the timing error is reduced (divided) by the number of 
oscillations. 
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3.  Significant Digits and Round-off 
 
Calculators and digital meters produce a much larger number of significant digits than is usually justified.  
The answer from a calculator has very high precision, typically to 8 or 10 digits.  In experiments, the number 
of significant digits is usually much less than this.  Suppose you want to divide two values obtained from an 
experiment – one value has two significant digits and the other value has three.  Although the calculator 
gives 8 significant digits, the answer is only significant to the smallest number of significant digits, only two.  
You must round-off the calculator number to two significant digits while the third significant figure is 
dropped.  When the third significant figure is greater than 5 the second significant figure is incremented 
one unit.  Thus, 6.23 becomes 6.2, whereas 6.25 becomes 6.3. 

 
It is often helpful to write numbers in scientific notation.  For example, the number 0.0000325 would be 
expressed as 3.25x10–5.  When measuring quantities such as voltage, it is best express the values in 
engineering notation which has powers of 10 in increments of 3.  Thus, 0.0000325 volts becomes 32.5x10-6 

V, or 32.5 μV.  With an uncertainty, the result should then be written as: 32.5±0.4 μV. 
 

4.  Mean and Standard Deviation 
 
Suppose that the only errors in a set of experiments are random in nature.  Then by repeating the 
experiment an infinite number of times we expect the average to be equal to the “true” value.  For a finite 
number N of experiments, the mean value of the set of experimental values, yi=y1, y2, ..., yN, is given by 
 

〈y〉 = Σyi / N. 
 
The deviation of individual experiments from the mean is δyi = yi–〈y〉.  The standard deviation σ of the set of 
experiments is then given by 

σ2 = Σ(δyi)
2 / (N–1) 

 
          = [ Σyi

2 – 〈y〉2 ] / (N–1). 
 
The N–1 in the denominator is used when 〈y〉 is the average of the data set.  If 〈y〉 is already the “true” 
value found by another method, then the denominator is N instead of N–1.  If 〈y〉 is given by a polynomial 
of order n, then the denominator is N–1–n.  This can be generalized to a denominator N–ν, where ν is the 
number of degrees of freedom.  When N is large, it makes little difference in the value of the standard 
deviation. 

– Significant Digits – 
 
 1.  UNCERTAINTIES HAVE LOW PRECISION 
  Standard deviations or uncertainties are rounded off to one significant digit 
  (or sometimes two digits if the most significant digit is between“1” and “1.4”). 
         
 2.  The computed number is then rounded off at the same digit as the uncertainty, 
 
   e.g. 4.537 ± 0.250 cm2 should be written 4.6 ± 0.3 cm2, 
     or (4.6±0.3) x 10–2 m. 
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5.  Propagation of Errors 
 
In general, for any function F(x,y,...) of a set of variables x,y,..., having standard deviations σx, σy,..., the 
standard deviation for the function F is given by 
 

σF
2 = (∂F/∂x)2 σx

2 + (∂F/∂y)2 σy
2 + 2 (∂F/∂x)(∂F/∂y) σxy

2 + ...  . 
 
When the deviations in the variables (x,y,...) are not correlated, the covariances vanish, σxy=...= 0, the 
equation reduces to 

σF
2 = (∂F/∂x)2 σx

2 + (∂F/∂y)2 σy
2 + ...  . 

 
 The following recipes are used for finding the cumulative error for various mathematical operations. 
 
5.1 Addition and Subtraction 
 
Given z = ax ± by, and their standard deviations, σx and σy, are not correlated, the standard deviation in z is 
given by 
 
     
For simple addition of two numbers the standard deviation are added in quadrature as 
 
 
 
(Note that for z = x+x, σz

2 = σx
2 +σx

2 + 2σxx
2 = 22 σx

2, since σxx=σx.) 
 
For example, compute the perimeter of a rectangle with sides h=2.0 ± 0.2 cm and w=3.5 ± 0.4 cm.  The 
perimeter is P = h+h+w+w = 2h+2w.  The standard deviation in the perimeter is 
σP

2 = 22 *0.22 + 22 *0.42 = 0.92.  Thus, the resulting perimeter is P = 11.0 ± 0.9 cm. 
 
 
5.2 Multiplication and Division 
 
Given that z = axny or z=axn/y, and their standard deviations, σx and σy, are not correlated.  Then the 
standard deviation in z is given by the fractional uncertainties 

 
 
 
 
 

For example, compute the area of the rectangle with sides h=2.0 ± 0.2 cm and w=3.5 ± 0.4 cm.  The area is 
A=hw.  The standard deviation in the area is now σA

2/A2= 0.22/2.02+0.42/3.52=0.152.  Thus, the resulting area 
is A=7 ± 1 cm2. 
 
5.3 Exponents 
 

 For z = a x±b,  σz /z = b σx / x. 
 For z = a e±bx,  σz /z = b σx. 
 For z = a ln(± b x), σz     = a σx / x. 
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6.  Interpolation 
 
Suppose you have a precise set of yi(xi) data points and want to find a y-value that lies between a pair of x-
values.  By linear interpolation, the value y(x) between y1(x1) and y2(x2) is given by 
 

y = y1 + (x-x1) [(y2-y1) / (x2-x1)]. 
 
In cases where the y(x) curve is significantly nonlinear between successive data points, a more precise 
method would be to replace the linear approximation by a polynomial which better represents the real 
curvature of y(x).  For a polynomial interpolation, more than 2 yi(xi) data points are required. 
 
 

7.  Smoothing y(x) Curves 
 
Smoothing noisy data is a convenient way to visually see what the general behavior looks like.  For example, 
smoothing can be used to estimate the midpoint and width of a very noisy peaked curve.  Note that when 
curve fitting the data to a function, identical results will be achieved by fitting the smoothed or 
unsmoothed data.  EasyPlot uses the following sliding window and bucket smoothing procedures. 
 
7.1 Sliding Window Smoothing 
 
Smoothing data by the sliding window method replaces each yi value by an average of yi and several 
adjacent y-values.  The y-values adjacent to yi are weighted less than yi, by an amount which decreases for 
increasing x-distance from the yi point.  In most cases, a Gaussian weighting function 
{exp[-(xi–x)2/b2]} is appropriate, however, a triangle function yields nearly identical results.  For example, 
using a triangle smoothing function and a window of M=5 points, each y-value is replaced by 
 

yi = (1*yi–2 + 2*yi–1 + 3*yi + 2*yi+1 + 1*yi+2) / 9. 
 
Notice that the points within (M-1)/2 of the end of the curve are not smoothed properly. 
 
7.2 Bucket Smoothing 
 
Bucket smoothing of a y(x) data set averages over buckets having equal intervals of x and replaces the y-
values in each bucket by their average.  The x-value is usually taken as the midpoint of the bucket interval 
rather than the average x-value.  This smoothing function in plotting software can be used to generate an 
effective set of data with a significantly smaller number of points.  It is also useful for converting a data set 
into an effective data set with equally spaced, monotonically increasing x-values. This method is useful for 
generating equally spaced points for Fourier transforming a data set. 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 

Rules for Eliminating Negligible Uncertainties 
 
Addition/Subtraction - eliminate uncertainties that are at least 3-times smaller. 
 
Multiplication/Division - eliminate fractional uncertainties that are at least 3-times smaller, even if 
the magnitude of the uncertainty is larger. 


