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I. INTRODUCTION

The objectives of this experiment are:

(1) explore the properties of a single LRC electrical oscillator circuit, including damping;

(2) study what happens when two oscillators are coupled and allowed to exchange energy.
More information on coupled oscillators can be found in the Appendix.

Il. APPARATUS

small box with circuit, switches, connectors, two yellow (or large) inductor coils
capacitors - fixed standard and adjustable

storage scope with interfaced computer

curve fitting software (EastPlot , MatLab, Python)

IIl. PROCEDURE
A. Measure Inductance

Install the standard capacitor and one inductor in the A-circuit. Connect the +5 VDC source to the box.
Connect the A-output to Chnl-1 of the scope. Connect the Trigger output to the scope trigger. Look for
the distorted square wave output having oscillations at the edges of the pulse. Find the decaying
oscillation of the A-circuit that occurs when the square wave pulse turns off. Note that the square wave
pulse turning on or off is similar to a hammer striking a bell to start it ringing (oscillating).

1. Measure the capacitance of the standard capacitor using the Extech Digital MultiMeter (DMM).
2. View the oscillation where the excitation pulse goes to V=0, which has the largest number of cycles.
3. Measure only one oscillation period of each inductor in the A-circuit.

a. Compute the two inductances and estimate their uncertainties.

b. Compare the values of the inductors.

Using the instructions below, curve fit the oscillations to precisely measure the frequency and damping.

4. Store the decaying waveform of one inductor in the A-circuit.
First, transform the waveform to make the average amplitude equal to zero (o in EasyPlot).
Curve-fit one or two periods to y=a*sin(bx+c) to obtain values for the frequency b and phase c.
Then, knowing initial values for b and c, fit the oscillations to y=a*sin(bx+c)exp(-dx/2).
Plot the V(t) data along with the curve fit.
What is the value of the damping coefficient y (=d)?
What is the value of the time constant of the damping, t=2/d?
Compute precise values for L, R, Q, and uncertainties for the A-circuit? (see appendix)
e. Compare the inductance uncertainty from the curve fit to that from the single period
measurement.
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You must show the TA your plots at the end of each section before proceeding to the next
section.


http://northeastern.edu/heiman/3600/index.html

B. Compare Resistances

a. Compare the R computed from y to the R of the coil measured with an ohmmeter. Discuss.
b. According to theory, by what percentage does damping affect the frequency?

C. Independent Oscillators

Add the inductor and adjustable capacitor to the B-circuit and connect the output to Chnl-2 of the
scope. With the coupling capacitor switched off (No) and "normal" excitation, adjust the B-capacitor
until both waveforms have the same period.

a. Measure the adjustable B-capacitor with the DMM and compare to the standard capacitor.

D. Unilateral Excitation of Coupled Oscillators

With the coupling capacitor on (Yes), switch off the B-circuit excitation (middle position of switch).

Again, use the oscillations that occur when the exciting pulse goes to zero volts.
Note that both the A and B waveforms periodically grow and decay in time.
Now, finely adjust the adjustable B-capacitor to achieve the best minima of one waveform.

1. Store waveforms of the A- and B-circuits.

2. Plot waveforms for the A- and B-circuits and their sum on one graph (shifted so they don’t overlap).
a. Relate this electrical exchange to that in the mass/spring system in the lab room. Lower the mass,
let go of it and describe its motion.

3. Plot the A and B data after removing the decay by dividing by the decaying exponential exp(-yt/2).

What is the "beat" frequency from the beat period?

How would you curve fit the beats?

Compute the value of the coupling capacitor Ceoupiing from the beat frequency.

Measure Ceoupiing directly (without removing it from the box) and explain how you measured it.
(Figure out how to separate it from the circuit.)
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4. Discuss what happens to the individual waveforms when the two uncoupled oscillators have slightly
different frequencies, but are still coupled?

5. Discuss any differences in the waveforms for the rising and falling edges of the excitation pulse.
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IV. APPENDIX: SIMPLE NOTES ON DRIVEN DAMPED HARMONIC OSCILLATOR

This page derives formulas for mechanical and electrical harmonic oscillators that have damping.
The next page derives formulas for a harmonic oscillator (HO) that is driven externally.

o B B B B o
Mechanical HO

The damped force equation
for the position x(t) is

d*x
dt*

dx
m + fB—+kx=0.
ﬁdt

Here, m is the mass, B the velocity-dependent
damping constant, and k the spring constant.
Using the following substitutions

y=B/mand  ®o%=k/m.
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The above equations can be rewritten generally as

T T S
LRC Electrical HO

The voltage equation for
capacitor charge g(t) is L
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dt F

Here L is the inductance, R is the resistance, C is

the capacitance, and i=dg/dt is the current.
Using the following substitutions
v=R/L and mo2=1/LC.
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d*x
dt?

+yﬁ+w§x:0.

dt

Solutions are found by substituting x(t)=Re{Ae?®'} into the differential equation, then

[0+ o Y+ 0o2] X(t) = 0, or [a2+ oY+ 002] = 0, and a = % [—y * (y>—4 0o2)Y2].

The solution for the underdamped case, Y<< o, is a
sinusoid with a decaying amplitude given by

4

t
x(t) = x,e 2

cos(w,t).

The damping constant y has the same units of frequency as the oscillating frequency wo. The angular
frequency o has units of radians/sec, or simply s™. The frequency f has units of Hertz (cycles/sec), where

®=27 f. The period of oscillation is T= 1/f = 2n/ .

Note that the damping reduces the frequency from mo to ®’ = (wo® —y2/4)"? = w0 (1 —y*/4 mo?)Y2.

The “quality factor” or Q-factor is a dimensionless quantity given by the ratio of frequency to damping,
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V. Appendix: From Alverson Lab Manuel

II.B  Coupled Oscillators

For the sake of mathematical simplicity, the resistance H in the oscillators will now
be ignored. Although the resistance has a very noticeable effect on the amplitude of
cecillation, it has only a small effect on the frequency. In this part of the experiment,
only the periods of the various observed motions will be calculated, and therefore the
resistance will be taken as zero. Two identical LC oscillators are capacitively coupled

together as shown in Figure 4.4.
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Figure 4.4. Coupled LC Oscillators

The equations describing this circuit are:
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using the equations in (7) above to eliminate g3 and i3 from Eqgs. (5) and (6), two coupled

equations describing i; and iz are found:
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o= Lo (149 - 4] (4.9)

Note the each equation is a function of two variables, namely i; and i;. Taking the sum
and difference of Eqs. (8) and (9), two new equations are found:

(g + q:% = L%'ﬁl +ia) (4.10)
1 L d. ..
(@ — ??]E - (€ +2¢) E{h — ia) (4.11)

These equations have the useful property that they can be written as a function of a
single variable with the substitutions:

g+ =1 +tq G- =q1—
Making these substitutions lead to the pair of equations:

d* 1
FEE A ok S (4.12)
gy = gy sinw,t (4.13)
d® 1
P (o Toy L (#14)
_ = g° sinw_t 4.15
q 7
o= |—1 (4.16)
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Thus the variables g, and g_ each behave as a simple harmonic cscillator with frequencies
of oscillation: 1

1
— — and
2my/LC 2w /L(C +2C)

The variables g, and g_ are called the normal coordinates for the system. Egs. (10}
and (11) each describe situations where the coupled oscillators act as a single harmonic
oscillator. These situations are called the “normal modes" of the system. In general, the
systemn motion can be more complicated than one of the normal modes. These modes
represent rather simple, but special cases of behavior, since the system can always be
described as a linear combination of the two modes, ie., g = Ag, + Bg_ . The constants
A and B are determined by the initial conditions, i.e. the values of g, i;, gz, and i; at
t = 0. In this experiment three cases will be observed: For all three cases the initial

currents will be zero, but the initial voltages, corresponding to the initial values of g,
and g will be:

g1 = g2 at ¢ = 0. This corresponds to the normal mode g, and is called the symmetric
maode since each oscillator is oscillating in phase at the same frequency.
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g1 = —gz at t = 0. This is the normal mode g_ and is called the antisymmetric mode
since each oscillator is oscillating at 1807 out of phase.

g1 = o, gz = 0 at £ = 0. In this case, one of the oscillators is given an initial amplitude
and the other is not. Here the subsequent behavior of the system is not described by
either of the normal modes alone. The behavior is more complex and is described
by a sum of equal amplitudes of each mode:

g = qo{sinw,t + sinw_t)

Since the two normal mode frequencies are not equal, the resulting sum is not
a single harmonic function. For weak coupling, (C7 < ), w, = w_ and the
two normal modes are close in frequency. When two functions of nearly equal

frequency and identical amplitudes are added, the resulting behavior has a beat
phenomena. This can be easily seen by applying trigonometric identities to the

previous expression for g
i 4w ] [(m+—w_)
— |t — |t
(=)= |75

If w, = w_ == wy, the behavior can be thought of as one sine function of frequency
nearly equal to wp, but whose amplitude slowly Huctuates between 0 and 2gg at
a frequency of (w; —w_)/2. The beat frequency (w, — w_) is double the naive
frequency (w, —w_)/2 as it corresponds to the frequency of successive maximum
values. The behavior can be thought of as a pair of oscillators each oscillating at
the average of the normal mode frequencies and the energy of oscillation slowly
poing back and forth between them with the beat frequency.

g = 2qpsin

1II. Apparatus

Electrical energy is supplied to the oscillator by means of a square wave which is produced
by a timer chip (#555) which is powered by a 5 Volt DC supply. FEach transition of the
square wave gives an initial amplitude to the oscillator. The period of the square wave
is chosen so that there is sufficient time between transitions (Figure 4.5) for the induced
oscillations to die down before the next transition occurs. The cscillations are observed
by means of an oscilloscope connected across the capacitors. The apparatus for this
experiment consists of a 5 volt power supply, a circuit for supplying the appropriate
waveform to the oscillators, a capacitance box, two large wirewound inductors, a dual
trace oscilloscope, and an oscilloscope camera. The circuit for supplying the appropriate
waveforms, one of the oscillator capacitors, and the coupling capacitor are contained in
a small grey box. The circuit diagram to this box and its connections are shown in
Figure 4.6.

A capacitance box is used to supply the capacitor for the second oscillator and instruc-
tions are given below for adjusting its value so that the two LC oscillators are identical.
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Figure 4.5.

There are several switches on the grey metal box. Switch 1 turns on and off the coupling
between the two oscillators. Switch 2 determines whether or not oscillator B will be
given an initial amplitude which is in phase (normal) or out of phase (inverted) with
oscillator A. Switch 2 may also be set to off, so that no initial amplitude is given to
oscillator B.



